J3N909/5 -

NASA TECHNICAL MEMORANDUM NASA TM-79013

SOME CHARACTERISTIC QUANTITIES OF KARMAN-TREFFTZ PROFILES

J. J. H. Blom

Translation of "Enige Karateristieke Grootheden Van Von
Karman-Trefftz ~Profielen", Technische Hogeschool, Delft
(Netherlands). Department of Aerospace Engineering,
Report No. VTH-LR-323, June 1981, 40 pp.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 JANUARY 1983




STANOARD TITLE PAGE

1. NRA.S.:'; N%M— 27013 2. Goevernment Accossion No. 3. Reciplent’s Cotelog Neo.

4. Title end Subriite 3. Report Dete
SOME CHARACTERISTIC QUANTITIES OF anuary 1983
KARMAN-TREFFTZ PROFI LES - 8. Perlorming Organtaetion Ceade

7. Avthods) 8. Porforming Orgenmigsation Report Neo,

J. J. H. Blonm
- 10. Work Unit Ne.

V. Contrect or Grant Neo.

9. Petlorming Organizetion Name end Addrens NASw- L
SCITRAN 32
Box 5456 13. Typo of Report end Poriod Covered
Santa Barl CA__ 91108 Translation

12. Swauung Aloaxy Nome end Address
ational Aeronautics and Space Administration

Wasnington, D.C, 20546 W, Spentering Agency Code

15. Sepplementery Netes
Translation of. "Enige Karateristieke Grootheden Van Von
Karman-Trefftz Profielenn Technische Hogeschool, Delft
(Netherlands). - Department of Aerospace Engineering, Report
No. VTH-LR-323, June 1981, 40 pp. (N82-19189)

16 Abstrect’
For von Karman-Trefftz profiles, the characteristics which
determine profile shape (profile nose dimensions, maximum
thickness and position; tail slope and curvature) are stated
as a function of transformation variables using the Timman
method. The profile is obtained by iterative deformation
of a von Xarman profile with known transformation, correspon
ing as well as possible to the desired profile. The figures
and relations which enable a good choice of the required pro-
file are given. .

17, Koy Words (Setosted by Author(s)) 10, Otswibution Stetemant

Unclassified - Unlimited

19. Secvrity Clessil, (of i reperd 2. Secwrity Cleseifl. (of o pogel N Mo, ol Peges | 22, Preoe
.Unclaseified Unclassified 33




Summary /1
The conform transformation for a given random profile can be determined by
means of the method designed by Timman (7). Here an auxiliary or starting profile
is used of which the transformation is known and which is as consistent as possible
with the given profile.
This starting profile is then deformed by iteration until the desired profile
shape is achieved,
A Karman-Trefftz profile is used for the starting profile.
\—Eér‘ these profiles the characteristic quantities which determine the profile
shape, such as the size of the radius of the nose, the maximum thickness and position

of the thickness as well as the slope of the tail and arching[are determined as a function

of the transformation variables. With the figures and drawings presented in this

article it is possible to choose well the required starting profile,
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1. Introduction /1

An important help in calculating the potential theoretical pressure distribution

around a\wing profile is the technique of conform image formation.

By this means a circular or almost circular contour in one surface ngdis
converted into a\y}ng‘profi1e into the other surface (z). The flow around the
profile (z-Lﬁlgnq!) then starts from the known flow around the circle iéﬂgi§p§@) and
the image function is totally determined.

In the years before and after the First World War a 1arge‘number of transform-
ation formulae were derived.

The best known of these image functions is that of Joukowsky (1) in which a
circle in the iEhiiiéﬁék‘is converted into a|§§§%§profi1e with an angle of slope

'8l= 0 in the z-| plane k=

The image function required for this purpose has two zero pointsg]that 1sbpoints
for which the derivative of the image function is equal to zero. One zero point lies
on the circular contour and is transferred in the image to the shaft rear edge of the
profile,.

The other zero point is surrounded by the circular contour and affects the form
of the profile.

The image method of Joukowsky offers only two possibilities of varying the
profile shapeg}specifica]]n;thickness and arch.

The more general transformation formula of Karmann and Trefftz (2) has besides
the already mentioned possibilities of variation, thickness and arch; the possibility
of choosing the . A - angle of slope. The image function also has two zero
points. The zero point Tocated on the circular contour is transferred in the image

into the rear edge of the profile with an angle of s1opef%“different from 0.




For the special case of the angle of s]ope5§7= 0 the image function can be
simplified to that of the Joukowsky profile.

For more practical applications sometimes an S-bend in the profile shape is
desiredp}that isBFhe profile nose is bent downwards and the profile slope bent
somewhat upwards, to form the S-shaped frame.

The von Karman-Trefftz transformation is not able to generate this type of
profile. The skeleton of the von Karman-Trefftz p%ofi]e is specifically sickle-
shaped and consists of two circular arcs. Mises (3) made this S-shaped profile
possible by allowing more than one zero point to be formed inside the circular
contour. The lower position of these zero points is regulated by the requirements
that the image function must be unique, specifically that there should be no log-
arithmic turn in the image function,

For the derivative this means no term with 14@;;5 The necessary prerequisite is
that the center of gravity of all the zero pointﬂé:that is§the zero point placed on
the circular contour as well as the ones enclosed by the contour coincide with the
origin of the surface of the circle, z= 0.

If the number of zero points inside the circular contour is Timited to one;then
the image function is simplified to that of the Joukowsky profile.

A detailed discussion of the[}?ﬁ;%iﬁ;%;} von Karman-Trefftz and Mises profiles
is given in (4), (5) and (6).

In (4) and (5) attention is also paid to the two profile families designed by

/2

Mueller. These are closely related to the von Karman-Trefftz family and have the same

possibilities for profile variation.

It is also worth mentioning that really random profile shapes cannot be described

with the indicated transformation formula. According to the image position of Riemannﬁq

the conform image of the circle to a given random profile is always possible, but ean- |

not be given in the form of a formula.




An elegant method by which the transformation of a random profile form can be
achieved numerically by iteration was given by Tiemann (7).

Heretﬁhe conform transformation of an arbitrary brof11e is found by starting
from a so-called initial profile of which the transformation is known.

The starting profile has the same angle of slope as the desired profile shape
and must be as consistent as possible with it (the same nose radius and/or thickness
and degree of arching). The starting profile (a von Karman-Trefftz profile) is then
deformed by iteration until the desired profile shape is achieved (8), (9).

For a quick and responsible choice of the starting profi]e&jt is desirable to
have a survey in which: the nose radius; the maximum thickness, the place of the /3
maximum thickness and the slope of the tail are given as a function of the variables
from the transformation formula.

This report will first give a short review of the von Karman-Trefftz profile
family.

Subsequently,relations are derived by which the nose radius, the maximum thick-
ness and the site of the maximum thickness can be determined. Fina]]ypﬁhe indicated
quantities are shown in a number of figures as a function of the transformation

variables.

2. Von Karman-Trefftz profiles /4

The image function given by von Karman and Trefftz (2) is:

z + kb (c . b)k

zZ-kb \T=B

; (2.1)

in which b is a real constant.

|

[
1

With the choice of the angle of slope k =2 —%

Ao |

The image function can also be written as:




|
RO MR (R, |
@+ 0)*- (g - b)X I (2.2)

The derivative over|{¢ of this image function is then:
o |z 22 (z + b)* (¢ - B! ] s
22 = 4kp 2:3
! % s - @-09% (2:3)
The pointsfF} + b as may be séen from-equation (2.3) are points in which fgg;
L
= 0.
If in infinity the field of flow in the z-ﬁpiaﬁewumust be identical to that in
theriﬁéﬂéiéné‘\than the conditions must be satisfied: §§5'= 1 for g+
e £ - eeme
The expansion into a series of functions (2.2) gives:
2 2 2 2 4 |
l P ST I Ul B U )  -N
3 4 45 3 ;
} <02 2 2 6 - (2.4)
| (k° - 1) (k° - 4) (2k" - 11) b~ _ o
l 91'5 —5- ..... l
‘/ ~ o . ] C-_”- o ___,-_i
From equation (2.4) we obtain for the derivative:
dz _ . _ K2 - 1Y - 1) ol - ) (o)
w"! —3—-(2) * 5 (z) - !
s o2 - 1) 6l -w) @2 - 1) (b)6 - (2.5)
159 'E + ceene !
That is;the condition imposed is satisfied. - -
The circle C1 is shaped as a profile in which the zero point 1ies on a contour
’\<l
of the circle, &= + b is shown as a sharp rear edge of the profile, z = + kb (see /5

figure 2.1).
The skeleton of this type of profile is formed by two circular arcs; the latter
lie between the images of the two zero points, z = + kb, and énclosed between them an

anglels (see figure 2.2). The skeleton arises from the circle CO which touches in
[i» = +b the circle C1 and passes through the other zero point;}-= -b.
.o [
It is easy to see that for the angle of slope é= Oﬁ‘that ispk = 2 the image

function (2.4) and the derivative (2.5) are transformed into the Joukowsky profile:




2 e

zu;-'-——

3
, .
xh %%' ' Gg ;(2'7)

The skeleton is reduced to a twice traveled cif&u{a}"arc placed between the points
z=+2b, the images in the z%g}éﬁe }{gfjthe two zero points:c:= +b (see figures

2.3 and 2.4)

3. The Slope of the Tail and fhe Arch /6

In the previous chapter it was already stated that the circle CO is formed as a
sickle-shaped contour consisting of two circular arcs placed between the points
z= + kb (figure 2.2).

The lines of contact at the points z = +kb on both circular arcs form with the

real axis an angle (6) of formula:
! 8\ 6 (3.1)
1 n=s(2-9)+3 ‘

\ Yz"B(Z'F)'f=Y1'5 | (3.2)

respectively in which {q, the angle between the "first profile" and the real axis
(see figure 2.2) is a measure of the arching of the profile,

. + v

| m '

From equations (3.1) and (3.2) it now follows: _

or also:

4
ety W (3.4)
. l T
in whichlyiis the slope of the bisectrix of the angle of s]ope!c.i The relation

between the slope ffénd the anghaﬁ;js given in figure 3.1.
For the case when the lower of the two circular arcs, which form together the

— -

skeleton is reduced to a straight 1ine (["2 = 0) expression (3.3) becomes:

-7-




The variation of the angle of s1ope'6 ‘with the arch B , according to the above
expression is given in fiqure 3.2.

Figure 3.3.shows a profile with flat lower portion of the skeleton.

| w ‘

(3.5)

4. The Chord of the Profite /7
For standardizing the profile coordinates the chord ¢ is’introduced.
The first point of the chord is considered as coming from the real point N (see
figure 4.1).
For the point N we have: el
,i g=b=-2cos B (4.1)
assuming that the circle C1 has a radius R ; 1. 4 ' I

The

The rear

With the

The size

substitution in the image function (2.2) gives:

i“_kbw(“c;s f e

Q'aﬁf ) f

point of the chord arises from the point T for which we have:
T (@.
image function (2.2) this gives:
Tesio (4.4) 1
of the chord is then: . __,LM___‘__, S
\c.kb1+( ml-«-kb (4.5)

(' " Cos e)

After some conversion we find: [' T T e e

e b .
] 1 -(1 -3315’—5 ‘ | (4.6)

_ A .
We can speak of a symmetrical profile (8 = 0) and the expression (4.6) is simplified

to:




3 2kb ‘
Csymm = T b)¥ (4.7) /8

For a\Jbukowskyﬁ profile, the angle of s]ope:£= 0 (k = 2) relations (4.6) and (4.7)

become respectively: . .

\ '
‘ 4 cos® B
’ CJoukowsky = Z cggse Y (4.8)
b — oL |
and: . = -~ e
A |
csym.Joukowsky *7-0b ' | (4,9)
)
.. . _ e - . ~ _ |
5. The Radius of the Profile Nose /9

To establish an expression for the nose radiuﬁrwe use a method given by Timman
(7). If two real functions%OJandRr}are defined in such a way that:

. Cowne * (5.1)
then the radius of the curve of thelﬁfdf}le sectionAhay be written as:
t ““’a -T =
! = :
| T E | (5.2)

. . U
in which!e gives the corresponding place on the circle contour. To further simplify

the expression of the deriva;jyg_(g.ﬁ%ngg,jpjjg@jgg_gg]gjiong are introduced:

i@

'l Z-bs= rye ! (5'3)
& '¢2 ’ L
‘ T+b= r, e ‘ (5.4)
ek -mKka eiq)3 |

: "3 (5.5)

The geometrical meaning of ril, rz;T;:téhdi¢§lfo11dW§—ffom‘figdré_5;1;_
| ] -

The substitution of:(5.3), (5.4) and (5.5) in (2.3) gives:

‘ A

9, k-1 10 -
bodz 4?p2 (ry e %) (ry e hk! : (5.6)
| % 032
. ] .‘('3 e )
From this we find for:
r T T T k=l
‘ (r. ek
C g |dz 22 "2 " |
! - = Lk‘p" ——m——— (5.7)
ST E 2 ,
i _ 3
-9-




1

LT = arg(dz)- arg(dz)= (k = 1) (0 + @) - 205 (5.8)
and:
oo T T |
| p do, do, dtp3 i(5.9
| 35"("‘”(36‘*39—)‘2%— ,( )
From figure 5.1 follows: ] o
‘ " ry=2sin (—g—) (5-10)
]‘ w1=%(n+e)-8 C(5:11)
'1 r =Vlab2+2-2cos 6 + bb{cos (8 - B) - cos B) (5 ]2)
' ) - i B i (e - B) t
% ®, = arctan (ZZT co: ;l: cos (8 - B), . (5 ]3)
The substitution of (5.3) and (5.4) in (5.5) gives: = = _
| !
\ rg =\/r22k + rTTk - 2r1kr2k cos (k(u)2 - u)‘)) : (5.]4)
k _. k . ?
kg, - k
w3 = arctan (r2 7 (02 r'k >0 w‘) )
r, cos ko, - r * cos ko | (5.15)
o o— - —_— - — e e e e e
| I 7o ]
The derivatives of rl, r2, r3, r @, ) and 03, over! e are then:
[ St I Mt RV B
{ g—e(rl) = cos (—2—) | (5.16)
2| , .
Py 1 | 5.17
LS5 o) =5 | ( )
1 o
| & (r) = 5 (2 sin 6 = 4b sin (8 - B)) - '(5.18)
2 4
l
i %—e—(goz)=—1—2-(2b cos (6 - B) -cos 6+ 1) (5.]9)
l |"2
' dr dr
D d k 2k-1 971 2k-1 "2 k=1
% (r3) " ('1 @t @) ,
dr dr -
(rl 3334’ ry -a-el) cos (I«p2 - kcp') + (r ré)k
do, do (5.20)
2 A
sin (ko = ko) (5% - 75)
T p” a0 ar, |
L d k 2k %9 2k 99 Kk ket
! av“"z"r‘“f(rn T gty sin (ke, - kop) g5t
3 e -

dr
k=1 k . 2 k k ‘
ry ry sin (kw2 - k(p]) g5~ " rp, cos (l(q;2 - k(pl) (5.21)

de do

-]o-!

~
—
—

|




By substitution of (5.10), (5.12) and (5.14) in the expression for e°i (5.7)
and of (5.17), (5.19) and (5.21) in the expression for x;’—g (5.9)Efor each value
of the variable &in the ;-‘y—jgi_é_ngj the radius of the curve of the profile circum-

ference in the z-|plane can be determined.

5.1 Symmetrical Proff]es

For a symmetrical profile ('s]= 0) the nose of the profile arises from the point
Je ;Avr_’of the circular contour C1 in the z- plane ! The expressions for rl1, r2, r3

and the derivatives overie of''@;» 9, and 93 are then respectively:

C STy et (5.22)
" = 2
r2-2(l _b) \ (5.23)
j
R e RN ((5.28)
|
d ¢ 1 |
I g (o) =5
e (5.25)
d 1
; ® @) =
' - 5.26
4 oy k-0 Ter-@-p) - p)<! ( )
i 46 3 2(l-b)z"+|-z(1-b)k :
- - - - - (5.27)
For[e°2 and ‘13%?. we may write: N
o | " - ‘ -
oo, 2,2 (1 -b) .
Lo =k 1+(1-|>)2"-2(1-b)12 B (5.28)
U TS - k=1
L dt Sy (2-b) _ 1+ (1 -b) - (2-b) L =b)
w T Damer T T (1 - -20 - b)* | (5.29)
and therefore for the radius of the profile nose: = . . .
} ) 2% (1 - b)*
irswm k-1 -(k+1) (-6 20 -b)" (5.30)
or rendered dimensionless with the expression for the chord (4.7):
| ) o
| (5) _ k(1 - b)K 4
D sy (k- 1)+ ke 1) (1 - )k I (5.31)

-11-
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For a Joukowsky profile, the angle of slopejd =0 (k = 2) simplifies the expres-
sion (5.31) to:

r _ 20 - b)? i
(C)symm.Joukowsky 1+ 300 - b)z i (5.32)

- - - e e

‘
!

In figure 5.2 for a series of angles of s1opeb¢he relation between the radius of the
nose of the symmetrical von Karman-Trefftz profile and the transformation variable

b js given,

5.2 Arch Profiles

If the profile is arched ;midifferent from 0) then it is not clear directly
which point[fjof the circular éontour is transfered in the i@ﬂiﬁ;ﬁﬁ;ﬁvinto the nose

Betz and Keune (11) and Ginzel (12) give for this the point E located on the
circular contour (figure 5.1).

In the‘?ﬂc;uigigi:<is the shortest distance from the circular contour to the
zero point ¢ = -b (11). By

Now the " of the point E is known, so the relations for :ef(5.7) and :EI'

gl -

(5.9) can be calculated and the radius of the nose of the arched profile is also
known.

In figure 5.3 to figure 5.7 for a series of angles of slope the relation is
given between the radius of the nose of the arched von Karman-Trefftz profile in the .
transformation variable b,

If the figures 5.2 to 5.7 are placed one over the otherFthen each following 13=
figure can be produced from the previous one by accomplishing the displacement.

It is apparent that this can be done at least with one figure, specifically 5.2
and the following simple relation:

[ e e e

(b),arciled’“ (b)symm - {1 - cos B) (5.33)

-12-




It can be noted that the curves in figure 5.3 to 5.7 all intersect at the point
b = cosfs” r/c = 0.

In the case of the symmetrical profileg= 0, the point is: b-= 1; r/c = 0

(figure 5.2).

The earlier mentioned shift is then: 1 = cosEB-‘

1

P

If the radius of the nose, the angle of s]opéi{%nd the arched EﬂZEEiJOf the
given profile are known, then it is possible to determine the transformation variable
b with figure 5.2 and expression (5.33).

With the quantities iﬁié and bthe starting profile of Timman (7) has been

established.

6. The Profile Shape

Expressions for the coordinates of a von Karman-Trefftz profile can be derived
in a very simple manner.

The substition of (5.3), ( .4)_anq_(5.5) in gxprg§§jpp_{21_lngyes:

- i, ip
(rz e )k + (r1 e l)k (6.])

z = kb !

————

After conversion we obtain:

kb - (e, P si
\z er_3 (cos ©3 = i sin (03) (l’z (cos ka +bsin k‘pz) (6.2)

i + r"i(f:os kg + i s_in k(pl))

The splitting of z into a real and imaginary portion gives:

x = Re(z) = -:% (r2k cos (sz - “’3) + 'jk cos (ko - “’3)) ‘(6.3)

ys= lm(z)=ﬁ’-(rksin (kep. -(,p)+rksin (ko, - ©,))
ry 2 2 3 1 1 3 (6.4)

Using the relations (5.10) to (5.15) for each point{;bf the circular contour in the
{E{Eﬁ;ﬁﬁiﬁffhe coordinates x and y of the profile are determined in the z-plane.
The equations (4.4) and (4.6) are used for standardization of the chord c of

the profile.

-13-




7. The Maximum Profile Thickness /15

The maximum thickness of a profile can be defined as the distance between the
Tines of contact on the profile contour which are parallel to the real axis (see
figure 7.1).

The determination of the profile thickness is then reduced basica]]y to finding

the extreme values of y{|spec1f1ca11yb¢he solution of the equat1on r (y)= 0.

—

The d1fferent1at1on of the expression (6 4) over e g1ves

k-1 2 .
‘—e- (y) = .-3 {r3 (k ry 35 sin (k(pz - gp3) +

) Q, dep
[ k 2 __73 k-1 -
! r, cos (k(pz 3) ( I -de—) +kr 3_ sin (kw] w3) +

(7.1)

1
dy dep .
k - T _ 73\) o
\‘ r‘ cos(k(p‘ w3) (kw W))
|
|

d
\ ( ry sin (k(p2 (93) + r‘k sin (k(p] - w3)) ?;l}
With expressions (5.10) to (5.21)pit is now possible to determine for each value of

the variable fg:in thelQ-p1ane the /édej(y).

Generally there are three points 5; on the profile contour for which y reaches
an extreme value “{(gng31, = 0; see figure 7.1).

The above given dé%ﬁnition is not suitable for arched profiles. From figure 7.1
with this definition it follows from 7.1 that the point of the maximum thickness can-
not be indicated uniquely. Therefore in the following we were only considering

symmetrical profiles GB =0).

7.1 Symmetrical Joukowsky Profiles

For a symmetrical Joukowsky profile the expression (2.6) may be written as:

—- - - J— e e e el

z-(b-l)+(cose+lslne)+b(b")+b(c°se"5'"e) l
‘ (b-1)2%42(b-1)cos+1 (7.2)
\

-14-




The splitting of z into a real and imaginary portion gives for the x and y coordinates:

[
bZ(b - 1) + b2 cos 6

i
\
l

x = Re(z) = (b - l{ + cos B + " - ‘)2 26 - 1) cos 6 + 1 ‘ (7.3)
| ..
e e - o . _Msine 7.
‘.l y = Im(2) sin @ ® - ])2 + 2(b - 1) cos 8 + 1 |
|
\ |
b U
For the derivative of y overie(wgvgayrwripe: S
: 2 2 2
\:T (Y) = cos B - b” cos 8 {(b - 1) + 1} + 2b (b 1) (7.5)
i

(b -1D2+2(b-1)cos 8+ 1} |
i

A Pt e A
The solution of the equation 155'(y) = 0 gives the values of}e'for which y reaches

an extreme value.

After the necessary conversion and the introduction of:

b-12+1=8 _1 (7.6)

i
a third degree equation in cos /ais obtained:
i

. 4(b - 1)2 c053 8 + 4B(b - 1) cos? o + B(B - bz) cos 6 - 2b2(b -1)=0

| (7.7)
To solve this equationpﬁhe method indicated in (13) is used.
The firstljﬁ@&;;(COSIQ)l, gives two values for (6 in which i92= mr-‘er ' The

substitution of [91 or (9glin expression (7.4) gives half the maximum figures. The

position of the thickness is obtained with (7.3).

The second [Toot ! is: (cosrb)z = 1ﬁzthat 1ﬁ§935 0 and
giving the tail point of the profile,

il

ieb' 2m, [ specifically

7.2 _Symmetrical von Karman-Trefftz Profiles

The maximum profile thickness (see figure 7.2) should occur when:

-15-
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The substitution of the expression for \iﬁs'S) in the above relation gives:
R . o !

(7.9)

[ e+-%-r(k- 1) (0, + ) = 20y = 7 1
|

1

in whichEQ;,mZJ‘ and ;é;Jare functions of[gj(see specifically the relations (5.11),

RSN S A

(5.13) and (5.15)).

The value ofLEthich satisfies the requirements formulated in (7.9) is found

by means of an iteration process.

The substitution of the (;{calculated by this means in expression (6.4) gives

half the maximum profile thickness. The position of the maximum thickness is

obtained with equation (6.3).

Figures 7.3 and 7.4 give for a series of angle of slope the maximum profile

thickness (in percentage c) and the position of the maximum thickness of the function

of the transformation variable b,

8.
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Figure 2.1: Von Karman-Trefftz profile
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Figure 2.2: Von Karman-Trefftz skeletons
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Figure 2.3: Joukowsky profile
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Figure 4.1:
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Figure 7.2: Determination of the maximum_thickness
for a symmetrical von Karman-Trefftz profile.
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